Shape sensitivity analysis of sequential structural–acoustic problems using FEM and BEM
نویسندگان
چکیده
A shape design sensitivity formulation for structural–acoustic problems using sequential finite element and boundary element methods is presented. Frequency-response analysis is used to obtain the dynamic behavior of the structure, while boundary element analysis is used to solve for the pressure response of the acoustic domain. It is shown that the adjoint method, which takes the reverse direction to response analysis, provides a very efficient way of sensitivity calculation. In addition, it has been shown that the adjoint equation for the shape design problem is the same as that of the sizing design problem. The only difference is the numerical integration that evaluates the sensitivity coefficient. The combination of the semi-analytical method for the structure and the analytical differentiation method for the acoustic cavity yields a very practical approach for the shape design sensitivity formulation. The accuracy of the sensitivity information is compared with the analytical sensitivity as well as the sensitivity calculated using the finite difference method. r 2005 Elsevier Ltd. All rights reserved.
منابع مشابه
Fem/aca-bem Coupling for Structural- Acoustic Design Sensitivity Analysis
The structural-acoustic optimization shows high potential in minimization of radiated noise especially for thin shell geometries. Acoustic design sensitivity analysis can provide information on how the geometry change affects the acoustic performance of the given structure, so it is an important step of the acoustic design and optimization processes. But the sensitivity analysis of the structur...
متن کاملA coupled ES-FEM and FM-BEM for structural acoustic problems
In this paper, a coupled numerical method of the edge-based smoothed finite element (ES-FEM) with the fast multipole BEM (FM-BEM) is proposed to analyze structural acoustic problems. The vibrating structure is modeled using the so-called ES-FEM-DSG3 method, where the 3-node linear triangle plate elements based on the Reissner–Mindlin plate theory with the discrete shear gap (DSG) technique for ...
متن کاملTime-Discontinuous Finite Element Analysis of Two-Dimensional Elastodynamic Problems using Complex Fourier Shape Functions
This paper reformulates a time-discontinuous finite element method (TD-FEM) based on a new class of shape functions, called complex Fourier hereafter, for solving two-dimensional elastodynamic problems. These shape functions, which are derived from their corresponding radial basis functions, have some advantages such as the satisfaction of exponential and trigonometric function fields in comple...
متن کاملDesign Optimization of Structural Acoustic Problems Using Fem-bem
A design optimization procedure of a noise-vibrationharshness (NVH) problem of a complicated vehicle structure is presented by assuming the acoustic pressure does not affect the structural vibration. The steady-state dynamic behavior of the vehicle is calculated from the frequency response finite element analysis, while the sound pressure level within the acoustic cavity is calculated from the ...
متن کاملSecond order sensitivity analysis for shape optimization of continuum structures
This study focuses on the optimization of the plane structure. Sequential quadratic programming (SQP) will be utilized, which is one of the most efficient methods for solving nonlinearly constrained optimization problems. A new formulation for the second order sensitivity analysis of the two-dimensional finite element will be developed. All the second order required derivatives will be calculat...
متن کامل